第 01 章:大模型解剖学:参数与 Scaling Law

核心观点:大模型本质上是对人类知识的”有损压缩”。参数量决定了压缩的”分辨率”,而 Scaling Law 揭示了算力转化为智能的物理定律。 1. 引言:智能的”分辨率” 当我们谈论 7B、70B、671B 这些数字时,我们在谈论什么? 很多人认为参数量仅仅意味着”更大的硬盘”,存了更多的死记硬背的知识。大错特错。 参数量实际上代表了模型对世界认知的分辨率。就像一张 JPG 图片,像素越高,边缘越清晰;参数越多,模型对逻辑、因果、微妙情感的”边缘”刻画就越精准。 本章我们将拆解这个黑盒,看看智能是如何从这些浮点数中涌现的。 2. 核心概念:压缩即智能 2.1 这里的”压缩”不是 WinRA

10X AI 全栈工程师的进化之路

内网文档 - 全栈手册) 👆🏻 全栈手册,是我在近期全栈化转型过程汇总梳理的较为结构化、系统性的知识库手册,希望能够对后来人有所帮助。 自我介绍: 1. 还是前端的我,目前负责 Lazada B 端前端基建,Merlion UI (UI 框架)) 作者,LAGO (页面发布平台))、Lazada Material (物料平台)) 等平台主要设计者及维护人,维护 Lazada 商家工作台 Node.js 应用(1000+ QPS)。 2. 开始转 Java 全栈的我,不到 4 个月被紧急成长完成了 Java 迭代需求 30+,主导大型重点项目 —— 智能审核(40 人日以上)交付
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×